Redefined T-fuzzy right h-ideals of hemirings

G. Mohanraj*
Department of Mathematics,
Annamalai University,
Tamil Nadu, India.

Email: gmohanraaj@gmail.com

E. Prabu
Department of Mathematics,
Annamalai University,
Tamil Nadu, India.

Email: ersprabumath@gmail.com

Abstract— We redefine the concepts of T-fuzzy right ideals and T-fuzzy right h-ideals of hemirings by using T-sum and T-product. We establish various necessary and sufficient conditions for a fuzzy set to be a T-fuzzy right ideal and T-fuzzy right h-ideal. The concept of T-fuzzy h-closure is introduced. We generalize the notion of h-closure into T-fuzzy h-closure.

Keywords— Hemirings, T-norm, T-fuzzy right ideals, T-fuzzy right h-ideals

I. Introduction

In 1965, the origin of fuzzy sets was introduced by L.A.Zadeh [14]. Latter it was applied in group theory by Rosenfeld [13]. Since then, many authors further introduced fuzzy sub-semigroups, fuzzy sub-rings, fuzzy sub-semirings, fuzzy sub-hemirings, fuzzy ideals and fuzzy sub-algebras, and so on (see, [7, 2, 5]). The notion of h-ideals in hemirings was initiated by D.R.La Torre [9] in 1965. The general properties of fuzzy h-ideals of hemirings were described in [12, 7, 15]. P.Dheena and G.Mohanraj [1] introduced T-fuzzy bi-ideal and T-fuzzy quasi ideal in a ring.

In this paper, the notions of T-fuzzy right ideals and T-fuzzy right h-ideals of hemirings are redefined by using T-sum and T-product. We establish various necessary and sufficient conditions for a fuzzy set to be a T-fuzzy right ideal and T-fuzzy right h-ideal. The concept of T-fuzzy h-closure is introduced. We generalize the notion of h-closure into T-fuzzy h-closure.

Basic definitions and mathematical facts about triangular norms can be found in [8].

II. PRELIMINARIES

Definition 2.1.[16] An algebraic system $(S,+,\cdot)$ is called a semiring if (S,+) and (S,\cdot) are semigroups, that follows both distributive laws:

$$x \cdot (y+z) = x \cdot y + x \cdot z$$
 and $(x+y) \cdot z = x \cdot z + y \cdot z$ for all $x, y, z \in S$.

Definition 2.2. An additively commutative semiring S is called a hemiring if it has an absorbing element $0 \in S$ such that

$$0 \cdot a = 0 = a \cdot 0$$
 and $0 + a = a = a + 0$ for all $a \in S$.

This paper was presented by the second author in the National Conference on AMASE-2016 conducted in Department of Mathematics, University College of Engineering Pattukkottai, Thanjavur, Tamil Nadu, India, on 22^{nd} January 2016.

A hemiring $(S,+,\cdot)$ in which " \cdot " is commutative is called commutative hemiring.

Definition 2.3. [1] A triangular norm [T-norm] is a binary operation T on [0,1], such that for all $x, y, z \in [0,1]$ which satisfies the following conditions:

$$i)$$
 $T(x, y) = T(y, x)$

ii)
$$T(x,T(y,z)) = T(T(x,y),z)$$

iii) If
$$x \ge x^*$$
 and $y \ge y^*$ then $T(x, y) \ge T(x^*, y^*)$

iv)
$$T(x,1) = T(1,x) = x$$

Note: Some basic triangular norms [8] are defined as follows:

- i) Minimum T-norm: $T_M(x, y) = \min\{x, y\}$
- ii) Product T-norm: $T_P(x, y) = x \cdot y$
- iii) Lukasiewicz T-norm: $T_L(x, y) = \max\{x + y 1, 0\}$
- iv) Drastic product T-norm:

$$T_D(x, y) = 0$$
 if $x, y \in [0,1)$ and

$$T_D(x, y) = \min\{x, y\}$$
 is otherwise,

(v) Hamacher T-norms: for any $\lambda \in [0, \infty]$

$$(T_{\lambda}^{H})(x,y) = \begin{cases} T_{\mathrm{D}}(x,y) & \text{if} \quad \lambda = \infty \\ 0 & \text{if} \quad \lambda = x = y = 0 \\ \frac{xy}{\lambda + (1 - \lambda)(x + y - xy)} & \text{otherwise} \end{cases}$$

Definition 2.4. A fuzzy set η of a hemiring S is a mapping $\eta: S \to [0,1]$.

Definition 2.5. A non-empty subset A of a hemiring S is called a right [left] ideal in S if (A,+) is closed and $AS \subseteq A(SA \subseteq A)$.

Definition 2.6. A right [left] ideal A of a hemiring S is called a right [left] h-ideal if $a_1, b_1 \in A$ and $x_1 + a_1 + z_1 = b_1 + z_1$ imply $x_1 \in A$ for $x_1, z_1 \in S$.

Definition 2.7. Let B be a subset of a hemiring S. The h-closure of B, denoted \overline{B} is defined as:

$$\overline{B} = \{a \in S \mid a + b_1 + z = b_1' + z\} \text{ for } b_1, b_1' \in B, z \in S \}.$$

^{*}Corresponding author.

Definition 2.8. Let η and δ be the fuzzy sets of a hemiring S and T be a triangular norm on [0, 1]. The T-sum of fuzzy sets η and δ is defined as follows:

$$(\eta +_T \delta)(p) = \bigvee_{p=q+r} T(\eta(q), \delta(r))$$

Remark: Instead of T-norm, if we take minimum T-norm in Definition 2.8, the T-sum is referred to as a sum of fuzzy sets η and δ .

Definition 2.9. Let η and δ be the fuzzy sets of a hemiring S and T be a triangular norm on [0, 1]. The T-product of fuzzy sets η and δ is defined as follows:

$$(\eta \cdot_T \delta)(p) = \begin{cases} \bigvee_{p=qr} T(\eta(q), \delta(r)) & \text{if } p = qr \\ 0 & \text{if p cannot be expressible as } p = qr \end{cases}$$

Remark: Instead of T-norm, if we take minimum T-norm in Definition 2.9, the T-product is called a fuzzy product of fuzzy sets η and δ .

III. REDEFINED T-FUZZY RIGHT h -IDEALS

Throughout this paper, unless otherwise specified, S denotes a hemiring, T indicates a triangular norm on [0,1] and "1" is a fuzzy set on S defined as 1(p) = 1 for all $p \in S$.

Definition 3.1. A fuzzy set η of S is called a T-fuzzy right [left] ideal of S if

- i) $\eta(p+q) \ge T(\eta(p), \eta(q))$
- ii) $\eta(pq) \ge \eta(p) [\eta(pq) \ge \eta(q)]$ for all $p, q \in S$.

Definition 3.2. A fuzzy set η of S is called a fuzzy right [left] ideal of S if

- i) $\eta(p+q) \ge \min\{\eta(p), \eta(q)\}$
- ii) $\eta(pq) \ge \eta(p) [\eta(pq) \ge \eta(q)]$ for all $p, q \in S$.

Lemma 3.3. Let η be a fuzzy set of S. Then the following conditions are equivalent

- i) $\eta(p+q) \ge T(\eta(p), \eta(q))$ for all $p, q \in S$.
- *ii*) $\eta +_T \eta \subseteq \eta$.

Proof. Let $\eta(p+q) \ge T(\eta(p), \eta(q))$ for all $p, q \in S$. If p=q+r, then $\eta(p) = \eta(q+r) \ge T(\eta(q), \eta(r))$. Thus $\eta(p) \ge \bigvee_{p=q+r} T(\eta(q), \eta(r))$

$$= (\eta +_T \eta)(p).$$

Therefore $\eta(p) \ge (\eta +_T \eta)(p)$ for all $p \in S$ implies $\eta +_T \eta \subseteq \eta$.

Conversely, let $\eta +_T \eta \subseteq \eta$ implies $\eta(p) \ge (\eta +_T \eta)(p)$. Thus

$$\eta(p+q) \ge (\eta +_T \eta)(p+q)$$

$$= \bigvee_{p+q=a+b} T(\eta(a), \eta(b))$$

$$\geq T(\eta(p), \eta(q)).$$

Therefore $\eta(p+q) \ge T(\eta(p), \eta(q))$ for all $p, q \in S$.

Theorem 3.4. A fuzzy set η of S is a T-fuzzy right [left] ideal of S if and only if

$$i) \eta +_{\tau} \eta \subset \eta$$

ii)
$$\eta \cdot_T 1 \subseteq \eta [1 \cdot_T \eta \subseteq \eta]$$

Proof. Let η be a T-fuzzy right ideal of S. By Lemma 3.3, $\eta +_T \eta \subseteq \eta$. If p cannot be expressible as p = qr, then $(\eta \cdot_T 1)(p) = 0$. Therefore $0 = (\eta \cdot_T 1)(p) \le \eta(p)$. If p = qr, then $\eta(p) = \eta(qr) \ge \eta(q) = T(\eta(q), 1(r))$. Thus

$$\eta(p) \ge \bigvee_{p=qr} T(\eta(q), 1(r))$$

$$= (\eta \cdot_T 1)(p).$$

Therefore $\eta(p) \ge (\eta \cdot_T 1)(p)$ for all $p \in S$. Hence $\eta \cdot_T 1 \subseteq \eta$. Similarly, we prove that if η is a T-fuzzy left ideal of S, then $1 \cdot_T \eta \subseteq \eta$.

Conversely, by Lemma 3.3, $\eta(p+q) \ge T(\eta(p), \eta(q))$ for all $p,q \in S$. Now, $\eta \cdot_T 1 \subseteq \eta$ implies $\eta(p) \ge (\eta \cdot_T 1)(p)$. Thus

$$\eta(pq) \ge (\eta \cdot_T 1)(pq)
= \bigvee_{pq=ab} T(\eta(a), 1(b))
\ge T(\eta(p), 1(q))
= \eta(p)$$

Therefore $\eta(pq) \ge \eta(p)$ for all $p \in S$. Hence η is a T-fuzzy right ideal of S. Similarly, we prove that if $1 \cdot_T \eta \subseteq \eta$, then η is a T-fuzzy left ideal of S,

Corollary 3.5. A fuzzy set η of S is a fuzzy right [left] ideal of S if and only if

- *i*) $\eta + \eta \subseteq \eta$
- *ii*) $\eta \cdot 1 \subseteq \eta [1 \cdot \eta \subseteq \eta]$

Proof. By taking $T(a,b) = \min\{a,b\}$ for all $a,b \in S$ in Theorem 3.4, we get the result.

Definition 3.6. Let η be a fuzzy set of S. A T-fuzzy right [left] ideal of S is called a T-fuzzy right [left] h-ideal of S if $x_1 + a_1 + z_1 = b_1 + z_1$ implies $\eta(x_1) \ge T(\eta(a_1), \eta(b_1))$ for $x_1, a_1, b_1, z_1 \in S$.

Definition 3.7. Let η be a fuzzy set of S. A fuzzy right [left] ideal of S is called a fuzzy right [left] h-ideal of S if

 $x_1 + a_1 + z_1 = b_1 + z_1$ implies $\eta(x_1) \ge \min{\{\eta(a_1), \eta(b_1)\}}$ for $x_1, a_1, b_1, z_1 \in S$.

Definition 3.8. Let η be a fuzzy set of S. Then the T-fuzzy h-closure denoted by $\overline{\eta}_T$ of S is defined as:

$$(\overline{\eta}_{T})(x_{1}) = \bigvee_{x_{1}+a_{1}+z_{1}=b_{1}+z_{1}} T(\eta(a_{1}),\eta(b_{1})) for x_{1},a_{1},b_{1},z_{1} \in S.$$

Remark: Instead of T-norm, if we take minimum T-norm in Definition 3.8, $\overline{\eta}_T$ denoted by $\overline{\eta}$ is called a fuzzy h-closure of η of S.

Theorem 3.9. A T-fuzzy right [left] ideal η of S is T-fuzzy right [left] h-ideal if and only if $\overline{\eta}_T \subseteq \eta$.

Proof. Let η be a T-fuzzy right h-ideal of S. Now, $x_1+a_1+z_1=b_1+z_1$ implies $\eta(x_1)\geq T(\eta(a_1),\eta(b_1))$. Thus

$$\eta(x_1) = \bigvee_{x_1 + a_1 + z_1 = b_1 + z_1} T(\eta(a_1), \eta(b_1)) = \overline{\eta}_T(x_1).$$

Therefore $\overline{\eta}_T \subseteq \eta$.

Conversely, let $\overline{\eta}_T \subseteq \eta$ implies $\eta(x_1) \ge \overline{\eta}_T(x_1)$ for all $x_1 \in S$. Thus if $x_1 + a_1 + z_1 = b_1 + z_1$, then

$$\eta(x_1) \geq \overline{\eta}_T(x_1) \geq \bigvee_{x_1 + a_1 + z_1 = b_1 + z_1} T(\eta(a_1), \eta(b_1)) \geq T(\eta(a_1), \eta(b_1)).$$

Therefore η is a T-fuzzy right h-ideal of S. Similarly, we prove that a T-fuzzy left ideal η of S is T-fuzzy left h-ideal of S if and only if $\overline{\eta}_T \subseteq \eta$.

Theorem 3.10. A fuzzy set η of S is a T-fuzzy right [left] h-ideal of S if and only if

- $i) \eta +_T \eta \subseteq \eta$,
- *ii)* $\eta \cdot_T 1 \subseteq \eta [1 \cdot_T \eta \subseteq \eta]$,
- *iii*) $\overline{\eta}_T \subseteq \eta$.

Proof. The proof follows from the Theorem 3.4 and Theorem 3.9.

Corollary 3.11. A fuzzy set η of S is a fuzzy right [left] h-ideal of S if and only if

- *i*) $\eta + \eta \subseteq \eta$,
- $ii) \eta \cdot 1 \subseteq \eta [1 \cdot \eta \subseteq \eta],$
- *iii*) $\overline{\eta} \subseteq \eta$.

Proof. By taking $T(a,b) = \min\{a,b\}$ for all $a,b \in S$ in Theorem 3.10, we get the result.

Theorem 3.12. Every fuzzy right [left] h-ideal is a T-fuzzy right [left] h-ideal of S for any T-norm.

Proof. Let η be fuzzy right h-ideal of S. For any T-norm, $T(a,b) \le T_m(a,b) = \min\{a,b\}$. Thus, for any T-norm

 $\eta(p+q) \ge \min\{\eta(p), \eta(q)\} \ge T(\eta(p), \eta(q))$ and $\eta(pq) \ge \eta(p)$. Now $x_1 + a_1 + z_1 = b_1 + z_1$ implies $\eta(x_1) \ge \min\{\eta(a_1), \eta(b_1)\} \ge T(\eta(a_1), \eta(b_1))$. Therefore η is a T-fuzzy right h-ideal of S for any T-norm. Similarly, we prove that every fuzzy left h-ideal is a T-fuzzy left h-ideal of S for any T-norm.

Remark: Converse of Theorem 3.12 need not be true as shown by the following Example 3.13.

Example 3.13. Let $S = \{0, a_1, a_2, a_3\}$ be a hemiring by the Cayley table as follows:

+	0	a_1	a_2	a_3
0	0	a_1	a_2	a_3
a_1	a_1	0	a_3	a_2
a_2	a_2	a_3	0	a_1
a_3	a_3	a_2	a_1	0

•	0	a_1	a_2	a_3
0	0	0	0	0
a_1	0	0	0	0
a_2	0	a_1	a_2	a_3
a_3	0	a_1	a_2	a_3

We define a fuzzy set η as follows:

$$\eta(x) = \begin{cases}
0.6 & \text{if } x = a_3 \\
0.5 & \text{if } x = 0 \\
0.45 & \text{if } x = a_1 \\
0.4 & \text{if } x = a_2
\end{cases}$$

Clearly, η is a T_P -fuzzy right h-ideal of S for the product T-norm. But

$$\eta(a_3 + a_3) = \eta(0) = 0.5 \ngeq 0.6 = \min{\{\eta(a_3), \eta(a_3)\}\}$$

implies η is not fuzzy right h-ideal of S.

Definition 3.14. Let η and δ be the fuzzy sets of a hemiring S and T be a triangular norm on [0, 1]. A T-intersection η and δ denoted by $T(\eta, \delta)$ on S is defined as follows:

$$T(\eta, \delta)(p) = T(\eta(p), \delta(p))$$

for all $p \in S$.

Remark: Instead of T-norm, if we take minimum T-norm in Definition 3.14, T-intersection is known as a intersection of fuzzy sets η and δ .

Theorem 3.15. Let η and δ be the fuzzy sets of S. If η and δ are T-fuzzy right [left] ideals of S, then $T(\eta, \delta)$ is a T-fuzzy right [left] ideal of S.

Proof. Let η and δ be the T-fuzzy right ideals of S and let $p,q\in S$. Now

$$T(\eta, \delta)(p+q) = T(\eta(p+q), \delta(p+q))$$

$$\begin{split} & \geq T(T(\eta(p),\eta(q)),T(\delta(p),\delta(q))) \\ & = T(\eta(p),T(\eta(q),T(\delta(p),\delta(q)))) \\ & = T(\eta(p),T(T(\eta(q),\delta(p)),\delta(q))) \\ & = T(\eta(p),T(T(\delta(p),\eta(q)),\delta(q))) \\ & = T(\eta(p),T(\delta(p),T(\eta(q),\delta(q)))) \\ & = T(T(\eta(p),\delta(p)),T(\eta(q),\delta(q))) \\ & = T(T(\eta,\delta)(p),T(\eta,\delta)(q)) \,. \end{split}$$

Therefore $T(\eta, \delta)(p+q) \ge T(T(\eta, \delta)(p), T(\eta, \delta)(q))$ for all $p, q \in S$. Now

$$T(\eta, \delta)(pq) = T(\eta(pq), \delta(pq))$$

$$\geq T(T(\eta(p), \delta(p)))$$

$$= T(T(\eta, \delta)(p)).$$

Therefore $T(\eta, \delta)(pq) \ge T(T(\eta, \delta)(p))$ for all $p, q \in S$. Hence $T(\eta, \delta)$ is a T-fuzzy right ideal of S, Similarly, we prove that if η and δ are T-fuzzy left ideals of S, then $T(\eta, \delta)$ is a T-fuzzy left ideal of S.

Corollary 3.16. Let η and δ be the fuzzy sets of S. If η and δ are fuzzy right [left] ideals of S, then $\eta \cap \delta$ is a fuzzy right [left] ideal of S.

Proof. Instead of T-norm, if we take minimum T-norm in Theorem 3.15, we get the result.

Theorem 3.17. Let η and δ be the fuzzy sets of S. If η and δ are T-fuzzy right [left] h-ideals of S, then $T(\eta, \delta)$ is a T-fuzzy right [left] h-ideal of S.

Proof. Let η and δ be the T-fuzzy right h-ideals of S. By Theorem 3.15, $T(\eta, \delta)$ is a T-fuzzy right ideal of S. Now $x_1 + a_1 + z_1 = b_1 + z_1$ and $x_1 \in S$ implies

 $\delta(x_1)\!\geq\!T(\delta(a_1),\delta(b_1)) \text{ and } \eta(x_1)\!\geq\!T(\eta(a_1),\eta(b_1)).$ Then

$$T(\eta, \delta)(x_{1}) = T(\eta(x_{1}), \delta(x_{1}))$$

$$\geq T(T(\eta(a_{1}), \eta(b_{1})), T(\delta(a_{1}), \delta(b_{1})))$$

$$= T(\eta(a_{1}), T(\eta(b_{1}), T(\delta(a_{1}), \delta(b_{1}))))$$

$$= T(\eta(a_{1}), T(T(\eta(b_{1}), \delta(a_{1})), \delta(b_{1})))$$

$$= T(\eta(a_{1}), T(T(\delta(a_{1}), \eta(b_{1})), \delta(b_{1})))$$

$$= T(\eta(a_{1}), T(\delta(a_{1}), T(\eta(b_{1}), \delta(b_{1}))))$$

$$= T(T(\eta(a_{1}), \delta(a_{1}), T(\eta(b_{1}), \delta(b_{1})))$$

$$= T(T(\eta, \delta)(a_{1}), T(\eta, \delta)(b_{1})).$$

Therefore
$$x_1 + a_1 + z_1 = b_1 + z_1$$
 implies $T(\eta, \delta)(x_1) \ge T(T(\eta, \delta)(a_1), T(\eta, \delta)(b_1))$

for
$$x_1, a_1, b_1, z_1 \in S$$
.

Hence $T(\eta, \delta)$ is a T-fuzzy right h-ideal of S, Similarly, we prove that if η and δ are T-fuzzy left h-ideals of S, then $T(\eta, \delta)$ is a T-fuzzy left h-ideal of S.

Corollary 3.18. [7] Let η and δ be the fuzzy sets of S. If η and δ are fuzzy right [left] h-ideals of S, then $\eta \cap \delta$ is a fuzzy right [left] h-ideal of S.

Proof. Instead of T-norm, if we take minimum T-norm in Theorem 3.17, we get the result.

REFERENCES

- [1] P. Dheena and G. Mohanraj, "T-fuzzy ideals in rings," International Journal of Computational Cognition, 9(2), pp. 98-101, 2011.
- [2] P. Dheena and G. Mohanraj, "(\(\lambda, \mu\))-fuzzy ideals in Semirings," Advances in Fuzzy Mathematics, 6(2), pp. 183-192, 2011.
- [3] P. Dheena and G. Mohanraj, "On Intuitionistic Fuzzy K -ideals of Semirings," International Journal of Computational Cognition, 9(2), pp. 45-50, 2011.
- [4] P. Dheena and G. Mohanraj, "On (λ, μ)-Fuzzy Prime ideals of Semirings," The Journal of Fuzzy Mathematics, 20(4), pp. 889-898, 2012.
- [5] P. Dheena and G. Mohanraj, "Fuzzy Small Ideals of Ring," Journal of Hyperstructures, 2(1), pp. 8-17, 2013.
- [6] J.S. Golan, "Semirings and their applications," Kluwer Academic Publishers, Dordrecht, 1999.
- [7] Y.B. Jun, M.A. Ozturk and S.Z. Song, "On fuzzy h-ideals in hemirings," Information Science, 162, pp. 211-226, 2004.
- [8] E.P. Klement, R. Mesiar and E. Pap, "Triangular Norms," Kluwer Academic Publishers, Dordrecht, 2000.
- [9] D.R. La Torre, "On h-ideals and k-ideals in hemirings," Publ. Math. Debrecen, 12, pp. 219-226, 1965.
- [10] G. Mohanraj, R. Hema and E. Prabu, "On various weak fuzzy prime ideals of ordered semigroup", Proceedings of the International Conference on Mathematical Sciences published by Elsevier, pp. 475-479, 2014.
- [11] G. Mohanraj and E. Prabu, "Weakly fuzzy prime ideal of hemiring," Proceedings of the International Conference on Mathematical Sciences published by Elsevier, pp. 480-483, 2014.
- [12] G. Mohanraj and E. Prabu, "Generalized Fuzzy Right h-Ideals of Hemirings," International Journal of Fuzzy Mathematical Archive," 7(2), pp. 147-155, 2015.
- [13] R. Rosenfeld, "Fuzzy groups," Journal of Mathematical Analysis and Applications, 35, pp. 512-517, 1971.
- [14] L.A. Zadeh, "Fuzzy sets," Information and Control, 8, pp. 338-353, 1965.
- [15] J. Zhan, W.A. Dudek, "Fuzzy h-ideals of hemirings," Information Science, 177, pp. 876-886, 2007.
- [16] Xueling Ma, Yunqiang Yin and Jianming Zhana, "Characterizations of h-intra- and h-quasi-hemiregular hemirings" Computers and Mathematics with Applications, 63, pp. 783-793, 2012.