Λ_{δ}^{s} -Separation axioms in bitopological spaces

A. Edward Samuel Ramanujan Research Centre, PG & Research Department of Mathematics, Government Arts College (Autonomous), Kumbakonam – 612002, Tamil Nadu, India. Email: aedward74_thrc@yahoo.co.in

Abstract - The aim of this paper is to introduce the concept of $ij - \Lambda_{\delta}^{s}$ open sets and associated closure operator in bitopological spaces and we study some of the fundamental properties of such sets. Also we shall introduce the notions of pairwise $\Lambda_{\delta}^{s} - T_{i}$ and pairwise $\Lambda_{\delta}^{s} - R_{i}$ bitopological spaces for i = 0, 1, 2 and investigate their properties.

Key words: $ij - \delta$ open set, $ij - \delta$ semi open set, $ij - \Lambda_{\delta}^{s}$ open set, pairwise $\Lambda_{\delta}^{s} - T_{0}$, pairwise $\Lambda_{\delta}^{s} - T_{1}$, pairwise $\Lambda_{\delta}^{s} - T_{2}$, pairwise $\Lambda_{\delta}^{s} - R_{0}$, pairwise $\Lambda_{\delta}^{s} - R_{1}$.

AMS Subject Classification: 54A10, 54A25, 54D10, 54E55.

I. INTRODUCTION

In topology, the class of generalized Λ -sets studied by Maki in [16] and defined the associated closure operator C^{Λ} . El-Sharkasy [9] studied the concept of Λ_{α} – sets and the associated topology $T^{\Lambda_{\alpha}}$. Caldas et al.[4,5] introduced the concept Λ_{δ}^{s} – sets (resp. V_{δ}^{s} – sets) in topological spaces, which is the intersection of δ – semiopen (resp. union of δ – semiclosed) sets. Khedr and Al-saadi [15] introduced and studied the concept of ij-s Λ -semi θ -closed and pairwise θ generalized $s\Lambda$ -set in bitopological spaces, which is an extension of the class of generalized Λ-sets. Ghareeb and Noiri [10] introduced the concept of Λ - Generalized closed sets in bitopological spaces. In 2006, Caldas et al. [6] introduced the notions of $\Lambda_\delta-T_0$, $\Lambda_\delta-T_1$, $\Lambda_\delta-R_0$ and $\Lambda_\delta-R_1$ in bitopological spaces. Quite recently, Edward Samuel and Balan [8] studied the concept of Λ_{δ}^{s} – Sets in bitopological

The purpose of this paper is to continue research along these directions but this time by utilizing $ij - \Lambda_{\delta}^{s}$ open sets. In this paper, we introduce $ij - \Lambda_{\delta}^{s}$ open sets and associated closure operator in bitopological spaces and we study some of their fundamental properties. Also, we introduce the notions of $\Lambda_\delta^s-T_0\,,\;\Lambda_\delta^s-T_1\,,\;\Lambda_\delta^s-T_2\,,\;\Lambda_\delta^s-R_0\,,\;\Lambda_\delta^s-R_1\;\;\text{bitopological}$ spaces and the major properties of this new concept will be studied.

II. PRELIMINARIES

Throughout the present paper, (X, τ_1, τ_2) (or briefly X) always mean a bitopological space. Also i, j = 1, 2 and $i \neq 1$ j. Let A be a subset of (X, τ_1, τ_2) . By i - int(A) and i - int(A)cl(A), we mean respectively the interior and the closure of A in the topological space (X, τ_i) for i = 1, 2. A subset A of X is called ij – regular open [12] if A = i - int[j - cl(A)]. A point x of X is called an $ij - \delta$ – cluster point of A if

This paper was presented by the second author in the National Conference on AMASE-2016 conducted in Department of Mathematics, University College of Engineering-Pattukkottai, Thanjavur, Tamil Nadu, India, on 22nd January 2016.

D. Balan*

Ramanuian Research Centre. PG & Research Department of Mathematics, Government Arts College (Autonomous), Kumbakonam – 612002, Tamil Nadu, India. Email: dh.balan@yahoo.com

 $i - Int(j - Cl(U)) \cap A \neq \phi$ for every τ_i – open set U containing x.

The set of all $ij - \delta$ – cluster points of A is called the ij – δ – closure of A and is denoted by $ij - \delta Cl(A)$.

Definition 2.1[13] A subset A is said to be $ij - \delta$ closed if $ij - \delta cl(A) = A$. The complement of $ij - \delta$ closed set is said to be $ij - \delta$ open. The set of all $ij - \delta$ open (resp. $ij - \delta$ closed) sets of X will be denoted by $ij - \delta O(X)$ (resp. $ij - \delta O(X)$) $\delta C(X)$).

Definition 2.2[7] A subset A of a bitopological space (X, τ_1, τ_2) is called $ij - \delta$ semi open if there exists an $ij - \delta$ open set U such that $U \subseteq A \subseteq j - cl(U)$.

Definition 2.3[8] For a subset A of a bitopological space (X, τ_1, τ_2) , we define $A^{\delta s \Lambda_{ij}}$ and $A^{\delta s V_{ij}}$ as follows, $A^{\delta s \Lambda_{ij}} = \bigcap$ $\{U: A \subseteq U, U \in ij - \delta SO(X)\}$ $A^{\delta s V_{ij}} = \bigcup \{U: U \subseteq$ and $A, U^C \in ij - \delta SO(X)$.

Definition 2.4[8] A subset A of a bitopological space (X, τ_1, τ_2) is called,

- (a) $ij \Lambda_{\delta}^{s}$ set if $A = A^{\delta s \Lambda_{ij}}$. (b) $ij V_{\delta}^{s}$ set if $A = A^{\delta s V_{ij}}$.

The family of all $ij - \Lambda_{\delta}^{s}$ sets (resp. $ij - V_{\delta}^{s}$) is denoted by $ij - \Lambda_{\delta}^{s}(X, \tau_1, \tau_2)$ (resp. $ij - V_{\delta}^{s}(X, \tau_1, \tau_2)$).

III.
$$ij - \Lambda_{\delta}^{s}$$
 CLOSURE OPERATOR

Definition 3.1 Let A be a subset of a bitopological space $(X, \tau_1, \tau_2),$

- (a) A is called a $ij \Lambda_{\delta}^{s}$ closed set if $A = T \cap C$, where T is a $ij - \Lambda_{\delta}^{s}$ set and C is a $ji - \delta$ semi closed set. The complement of a $ij - \Lambda^s_{\delta}$ closed set is called $ij - \Lambda^s_{\delta}$ open. The family of all $ij - \Lambda_{\delta}^{s}$ open sets and $ij - \Lambda_{\delta}^{s}$ closed sets are denoted by $ij - \Lambda_{\delta}^{s} O(X, \tau_{1}, \tau_{2})$ and $ij - \Lambda_{\delta}^{s} C(X, \tau_{1}, \tau_{2})$.
- (b) A point $x \in (X, \tau_1, \tau_2)$ is called a $ij \Lambda_{\delta}^s$ cluster point of A if for every $ij - \Lambda_{\delta}^{s}$ open set U of (X, τ_{1}, τ_{2}) containing x, $A \cap U \neq \phi$. The set of all $ij - \Lambda_{\delta}^{s}$ cluster points is called the $ij - \Lambda_{\delta}^{s}$ closure of A and is denoted by $ij - C^{\Lambda_{\delta}^{s}}(A)$.

Theorem 3.2 Let A, B and $\{B_{\alpha}, \alpha \in J\}$ be subsets of a bitopological space (X, τ_1, τ_2) . For $ij - \Lambda_{\delta}^{s}$ closure, the following properties hold,

- (a) $A \subseteq ij C^{\Lambda_{\delta}^{s}}(A)$.
- (b) $ij C^{\Lambda_{\delta}^{s}}(A) = \{U: A \subseteq U, U \in ij \Lambda_{\delta}^{s}C(X, \tau_{1}, \tau_{2})\}.$
- (c) If $A \subseteq B$, then $ij C^{\Lambda_{\delta}^{s}}(A) \subseteq ij C^{\Lambda_{\delta}^{s}}(B)$.

^{*}Corresponding author.

- (d) A is $ij \Lambda_{\delta}^{s}$ closed if and only if $A = ij C^{\Lambda_{\delta}^{s}}(A)$.
- (e) $ij C^{\Lambda_{\delta}^{s}}(A)$ is $ij \Lambda_{\delta}^{s}$ closed.
- (f) $\bigcup_{\alpha \in J} ij C^{\Lambda_{\delta}^{s}}(B_{\alpha}) = ij C^{\Lambda_{\delta}^{s}}(\bigcup_{\alpha \in J} B_{\alpha}).$
- (g) $ij C^{\Lambda_{\delta}^{s}} [ij C^{\Lambda_{\delta}^{s}}(A)] = ij C^{\Lambda_{\delta}^{s}}(A).$

Proof. (a), (b), (c), (e) Obvious. From the definition.

- (d) Obvious. From (a) and definition.
- (f) Suppose that there exists a point x such that $x \notin ij C^{\Lambda_{\delta}^{s}}(\bigcup_{\alpha \in J} B_{\alpha})$. Then, there exists a subset $U \in ij \Lambda_{\delta}^{s}(X, \tau_{1}, \tau_{2})$ such that $\bigcup_{\alpha \in J} B_{\alpha} \subseteq U$ and $x \notin U$. Thus for each $\alpha \in J$, we have $x \notin ij C^{\Lambda_{\delta}^{s}}(B_{\alpha})$. Thus implies that $x \notin \bigcup_{\alpha \in J} ij C^{\Lambda_{\delta}^{s}}(B_{\alpha})$.

Conversely, we suppose that there exists a point $x \in X$ such that $x \notin \bigcup_{\alpha \in J} ij - C^{\Lambda_{\delta}^{\S}}(B_{\alpha})$. Then, there exist subsets $U_{\alpha} \in ij - \Lambda_{\delta}^{\S}(X, \tau_{1}, \tau_{2})$ for each $\alpha \in J$ such that $x \notin U_{\alpha}$ and $B_{\alpha} \subseteq U_{\alpha}$. Let $U = \bigcup_{\alpha \in J} U_{\alpha}$, we have $x \notin U$, $\bigcup_{\alpha \in J} B_{\alpha} \subseteq U_{\alpha}$ and $U \in ij - \Lambda_{\delta}^{\S}(X, \tau_{1}, \tau_{2})$. Thus $x \notin ij - C^{\Lambda_{\delta}^{\S}}(\bigcup_{\alpha \in J} B_{\alpha})$.

(g) Suppose that there exists a point $x \in X$ such that $x \notin ij - C^{\Lambda_\delta^s}(A)$. Then there exists a subset $U \in ij - \Lambda_\delta^s(X, \tau_1, \tau_2)$ such that $x \notin U$ and $U \supseteq A$. Since $U \in ij - \Lambda_\delta^s(X, \tau_1, \tau_2)$ we have $ij - C^{\Lambda_\delta^s}(A) \subseteq U$. Thus we have $x \notin ij - C^{\Lambda_\delta^s}(ij - C^{\Lambda_\delta^s}(A))$. Therefore $ij - C^{\Lambda_\delta^s}(ij - C^{\Lambda_\delta^s}(A)) \subseteq ij - C^{\Lambda_\delta^s}(A)$.

Theorem 3.3 Let A be a subset of a bitopological space (X, τ_1, τ_2) , then following are hold,

- (a) If A_{α} is $ij \Lambda_{\delta}^{s}$ closed sets for each $\alpha \in J$, then $\bigcap_{\alpha \in J} U_{\alpha}$ is $ij \Lambda_{\delta}^{s}$ closed.
- (b) If A_{α} is $ij \Lambda_{\delta}^{s}$ open sets for each $\alpha \in J$, then $\bigcup_{\alpha \in I} U_{\alpha}$ is $ij \Lambda_{\delta}^{s}$ open.

Proof. Obvious.

Definition 3.4 Let A be a subset of a bitopological space (X, τ_1, τ_2) , then the $ij - \Lambda_\delta^s$ kernel of A, denoted by $ij - \Lambda_\delta^s \operatorname{Ker}(A)$ is defined to be the set $ij - \Lambda_\delta^s \operatorname{Ker}(A) = \bigcap \{ U \in ij - \Lambda_\delta^s \operatorname{O}(X, \tau_1, \tau_2) : A \subseteq U \}$.

Theorem 3.5 For any two subsets A and B of a bitopological space (X, τ_1, τ_2) ,

- (a) If $A \subseteq B$, then $ij \Lambda_{\delta}^{s} \operatorname{Ker}(A) \subseteq ij \Lambda_{\delta}^{s} \operatorname{Ker}(A)$.
- (b) $ij \Lambda_{\delta}^{s} \operatorname{Ker}[ij \Lambda_{\delta}^{s} \operatorname{Ker}(A)] = ij \Lambda_{\delta}^{s} \operatorname{Ker}(A)$.

Proof. Obvious.

Theorem 3.6 For any two points x and y of a bitopological space (X, τ_1, τ_2) , $y \in ij - \Lambda_\delta^s \operatorname{Ker}(\{x\})$ if and only if $x \in ij - C^{\Lambda_\delta^s}(\{y\})$.

Proof. Let $y \notin ij - \Lambda_{\delta}^{s} \operatorname{Ker}(\{x\})$. Then there exists a $ij - \Lambda_{\delta}^{s}$ open set U containing x such that $y \notin U$. Hence $x \notin ij - C^{\Lambda_{\delta}^{s}}(\{y\})$. Similarly the converse is true.

Theorem 3.7 If (X, τ_1, τ_2) be a bitopological space and $A \subset X$, then $ij - \Lambda_{\delta}^{s} \operatorname{Ker}(A) = \{x \in X : ij - C^{\Lambda_{\delta}^{s}}(\{x\}) \cap A \neq \phi\}.$

Proof. Let $x \in ij - \Lambda_{\delta}^{s} \operatorname{Ker}(A)$ and suppose that $ij - C^{\Lambda_{\delta}^{s}}(\{x\}) \cap A = \phi$. Then $x \notin X \setminus ij - C^{\Lambda_{\delta}^{s}}(\{x\})$ which is a $ij - \Lambda_{\delta}^{s}$ open set containing A. This is impossible, since

 $x \in ij - \Lambda_{\delta}^{s} \operatorname{Ker}(A)$. Consequently, $ij - C^{\Lambda_{\delta}^{s}}(\{x\}) \cap A \neq \phi$. Next, let $x \in X$ such that $ij - C^{\Lambda_{\delta}^{s}}(\{x\}) \cap A \neq \phi$ and suppose that $x \notin ij - \Lambda_{\delta}^{s} \operatorname{Ker}(A)$. Then there exists a $ij - \Lambda_{\delta}^{s}$ open set U containing A and $x \notin U$. Let $y \in ij - C^{\Lambda_{\delta}^{s}}(\{x\}) \cap A$. Hence U is a $ij - \Lambda_{\delta}^{s}$ neigbourhood of y which does not contain x. By this contradiction $x \in ij - \Lambda_{\delta}^{s} \operatorname{Ker}(A)$.

Definition 3.8 A bitopological space space (X, τ_1, τ_2) is called,

- (a) pairwise $\Lambda_{\delta}^{s} T_{0}$ if for each pair of distinct points in X, there is a $ij \Lambda_{\delta}^{s}$ open set containing one of the points but not the other.
- (b) pairwise $\Lambda_{\delta}^{s} T_{1}$ if for each pair of distinct points x and y in X, there is a $ij \Lambda_{\delta}^{s}$ open U in X containing x but not y and a $ji \Lambda_{\delta}^{s}$ open set V in X containing y but not x.
- (c) pairwise $\Lambda_{\delta}^{s} T_{2}$ if for each pair of distinct points x and y in X, there exist a $ij \Lambda_{\delta}^{s}$ open set U and $ji \Lambda_{\delta}^{s}$ open set V such that $x \in U$, $y \in V$ and $U \cap V = \phi$.

Remark 3.9 If a bitopological space space (X, τ_1, τ_2) is pairwise $\Lambda_{\delta}^s - T_i$, then it is pairwise $\Lambda_{\delta}^s - T_{i-1}$, i = 1, 2.

Theorem 3.10 A bitopological space space (X, τ_1, τ_2) is pairwise $\Lambda_{\delta}^s - T_0$ if and only if for each pair of distinct points x, y of $X, ij - C^{\Lambda_{\delta}^s}(\{x\}) \neq ji - C^{\Lambda_{\delta}^s}(\{y\})$.

Proof. Suppose that $x, y \in X$, $x \neq y$ and $ij - C^{\Lambda_{\delta}^{\varsigma}}(\{x\}) \neq ji - C^{\Lambda_{\delta}^{\varsigma}}(\{y\})$. Let z be a point of X such that $z \in ij - C^{\Lambda_{\delta}^{\varsigma}}(\{x\})$ but $z \notin ji - C^{\Lambda_{\delta}^{\varsigma}}(\{y\})$. We claim that $x \notin ji - C^{\Lambda_{\delta}^{\varsigma}}(\{y\})$. For it, if $x \in ji - C^{\Lambda_{\delta}^{\varsigma}}(\{y\})$ then $ij - C^{\Lambda_{\delta}^{\varsigma}}(\{x\}) \subseteq ji - C^{\Lambda_{\delta}^{\varsigma}}(\{y\})$ and this contradicts the fact that $z \notin ji - C^{\Lambda_{\delta}^{\varsigma}}(\{y\})$. Consequently, $x \in ji - \Lambda_{\delta}^{\varsigma}O(X, \tau_1, \tau_2)$, $[ji - C^{\Lambda_{\delta}^{\varsigma}}(\{y\})]^C$ to which y does not belong.

Conversely, Let (X, τ_1, τ_2) be a pairwise $\Lambda^s_\delta - T_0$ space and x, y be any two distinct points of X. There exists a $ij - \Lambda^s_\delta$ open set G containing x or y, say x but not y. Then G^C is a $ij - \Lambda^s_\delta$ closed set which does not contain x but contains y. Since $ji - C^{\Lambda^s_\delta}(\{y\})$ is the smallest $ji - \Lambda^s_\delta$ closed set containing $y, ji - C^{\Lambda^s_\delta}(\{y\}) \subseteq G^C$, and so $x \notin ji - C^{\Lambda^s_\delta}(\{y\})$. Consequently, $ij - C^{\Lambda^s_\delta}(\{x\}) \neq ji - C^{\Lambda^s_\delta}(\{y\})$.

Theorem 3.11 A bitopological space (X, τ_1, τ_2) is pairwise $\Lambda_{\delta}^s - T_1$ if and only if the singletons are $ij - \Lambda_{\delta}^s$ closed sets.

Proof. Suppose that (X, τ_1, τ_2) is pairwise $\Lambda^s_\delta - T_1$ and x be any point of X. Let $y \in \{x\}^C$. Then $x \neq y$ and so there exists a $ij - \Lambda^s_\delta$ open set U_y such that $y \in U_y$ but $x \notin U_y$. Consequently, $y \in U_y \subseteq \{x\}^C$ i.e., $\{x\}^C = \bigcup \{U_y : y \in \{x\}^C\}$ which is $ij - \Lambda^s_\delta$ open.

Conversely, suppose that $\{p\}$ is $ij - \Lambda_{\delta}^s$ closed for every $p \in X$. Let $x, y \in X$ with $\neq y$. Now $x \neq y$ implies $y \in \{x\}^C$. Hence $\{x\}^C$ is a $ij - \Lambda_{\delta}^s$ open set containing y but not containing x. Similarly $\{y\}^C$ is a $ji - \Lambda_{\delta}^s$ open set containing x but not y. Therefore, (X, τ_1, τ_2) is a pairwise $\Lambda_{\delta}^s - T_1$ space.

Definition 3.12 A bitopological space (X, τ_1, τ_2) is pairwise Λ_{δ}^s – symmetric if for x and y in X, $x \in ji - C^{\Lambda_{\delta}^s}(\{y\})$ implies $y \in ji - C^{\Lambda_{\delta}^s}(\{x\})$.

Definition 3.13 A subset *A* of a bitopological space (X, τ_1, τ_2) is called a $ij - \Lambda_{\delta}^{s}$ generalized closed set (briefly $ij - \Lambda_{\delta}^{s} - g$

closed) if $ji - C^{\Lambda_{\delta}^{s}}(A) \subseteq U$ whenever $A \subseteq U$ and U is $ij - \Lambda_{\delta}^{s}$ open.

Theorem 3.14 Every $ij - \Lambda_{\delta}^{s}$ closed set is $ij - \Lambda_{\delta}^{s} - g$ closed.

Remark 3.15 The converse of above theorem is not true in general.

Theorem 3.16 A bitopological space (X, τ_1, τ_2) is pairwise Λ_{δ}^{s} – symmetric if and only if $\{x\}$ is $ij - \Lambda_{\delta}^{s} - g$ closed for each $x \in X$.

Proof. Assume that $x \in ji - C^{\Lambda_{\delta}^{s}}(\{y\})$ but $y \notin ij - C^{\Lambda_{\delta}^{s}}(\{x\})$. This implies that the $[ij - C^{\Lambda_{\delta}^{s}}(\{x\})]^{c}$ contains y. Therefore, the set $\{y\}$ is a subset of $[ij - C^{\Lambda_{\delta}^{s}}(\{x\})]^{c}$. This implies that $ji - C^{\Lambda_{\delta}^{s}}(\{y\})$ is a subset of $[ij - C^{\Lambda_{\delta}^{s}}(\{x\})]^{c}$. Now $[ij - C^{\Lambda_{\delta}^{s}}(\{x\})]^{c}$ contains x which is a contradiction.

Conversely, suppose that $\{x\} \subseteq U \in ij - \Lambda^s_\delta O(X, \tau_1, \tau_2)$, but $ij - C^{\Lambda^s_\delta}(\{x\})$ is not a subset of U. This means that $ij - C^{\Lambda^s_\delta}(\{x\})$ and U^C are not disjoint. Let $y \in ij - C^{\Lambda^s_\delta}(\{x\}) \cap (X \setminus U)$. Now we have $x \in ji - C^{\Lambda^s_\delta}(\{y\})$ which is a subset of U^C and $x \notin U$. This is a contradiction.

Theorem 3.17 If a bitopological space (X, τ_1, τ_2) is pairwise $\Lambda_{\delta}^s - T_1$ space, then it is pairwise

 Λ_{δ}^{s} – symmetric.

Proof. In a pairwise $\Lambda_{\delta}^{s} - T_{1}$ space, singleton sets are $ij - \Lambda_{\delta}^{s}$ closed and Therefore, $ij - \Lambda_{\delta}^{s} - g$ closed. By theorem 3.16, (X, τ_{1}, τ_{2}) is pairwise $\Lambda_{\delta}^{s} - \text{symmetric}$.

Theorem 3.18 For a bitopological space (X, τ_1, τ_2) the following are equivalent:

- (a) (X, τ_1, τ_2) is pairwise Λ_δ^s symmetric and pairwise Λ_δ^s T_0 .
- (b) (X, τ_1, τ_2) is pairwise $\Lambda_{\delta}^s T_1$.

Proof. (a) \Rightarrow (b) Let $x \neq y$ and by pairwise $\Lambda_{\delta}^{s} - T_{0}$, by remark 3.9 we may assume that $x \in U_{1} \subseteq \{y\}^{C}$ for some $U_{1} \in ij - \Lambda_{\delta}^{s} O(X, \tau_{1}, \tau_{2})$. Then $x \notin ji - C^{\Lambda_{\delta}^{s}}(\{y\})$. Therefore, by the definition of pairwise Λ_{δ}^{s} – symmetric, we have $y \notin ij - C^{\Lambda_{\delta}^{s}}(\{x\})$. There exists a $U_{2} \in ji - \Lambda_{\delta}^{s} O(X, \tau_{1}, \tau_{2})$ such that $y \in U_{2} \subseteq \{x\}^{C}$. Therefore, (X, τ_{1}, τ_{2}) is a pairwise $\Lambda_{\delta}^{s} - T_{1}$ space.

Theorem 3.19 For a pairwise Λ_{δ}^{s} – symmetric space (X, τ_{1}, τ_{2}) the following are equivalent:

- (1) (X, τ_1 , τ_2) is pairwise $\Lambda_{\delta}^{s} T_0$.
- (2) (X, τ_1, τ_2) is pairwise $\Lambda_{\delta}^s T_1$.

Proof. (1) \Longrightarrow (2) Obvious. From theorem 3.18.

 $(2) \Longrightarrow (1)$ Obvious. From Remark 3.9.

IV. PAIRWISE $\Lambda_{\delta}^{s} - R_{0}$ SPACES

Definition 4.1 A bitopological space (X, τ_1, τ_2) is a pairwise $\Lambda_{\delta}^{s} - R_0$ if for each $ij - \Lambda_{\delta}^{s}$ open set $U, x \in U$ implies $ji - C^{\Lambda_{\delta}^{s}}(\{x\}) \subseteq U$.

Theorem 4.2 In a bitopological space (X, τ_1, τ_2) , the following statements are equivalent:

- (a) (X, τ_1, τ_2) is pairwise $\Lambda_{\delta}^s R_0$.
- (b) for any $ij \Lambda_{\delta}^{s}$ closed set G and a point $x \notin G$, there exists $U \in ji \Lambda_{\delta}^{s} O(X, \tau_{1}, \tau_{2})$ such that $x \notin U$ and $G \subseteq U$.
- (c) for any $ij \Lambda_{\delta}^{s}$ closed set G and $x \notin G$, then $ji C^{\Lambda_{\delta}^{s}}(\{x\}) \cap G = \phi$.

Proof. (a) \Longrightarrow (b): Let G be a $ij - \Lambda_{\delta}^{s}$ closed set and $x \notin G$. Then by (a), $ji - C^{\Lambda_{\delta}^{s}}(\{x\}) \subseteq X \setminus G$. Let $U = X \setminus ji - C^{\Lambda_{\delta}^{s}}(\{x\})$, then $U \in ji - \Lambda_{\delta}^{s}O(X, \tau_{1}, \tau_{2})$ and also $G \subseteq U$ and $x \notin U$.

- (b) \Longrightarrow (c): Let G be a $ij \Lambda_{\delta}^{s}$ closed set and a point $x \notin G$. Then by (b), there exists $U \in ji \Lambda_{\delta}^{s}O(X,\tau_{1},\tau_{2})$ such that $G \subseteq U$ and $x \notin U$. Since $U \in ji \Lambda_{\delta}^{s}O(X,\tau_{1},\tau_{2})$, $U \cap ji C^{\Lambda_{\delta}^{s}}(\{x\}) = \phi$. Then $\cap ji C^{\Lambda_{\delta}^{s}}(\{x\}) = \phi$.
- (c) \Longrightarrow (a): Let $G \in ij \Lambda_{\delta}^{s} O(X, \tau_{1}, \tau_{2})$ and $x \in G$. Now $X \setminus G$ is $ij \Lambda_{\delta}^{s}$ closed and $x \notin X \setminus G$ x. By (c), $ji C^{\Lambda_{\delta}^{s}}(\{x\}) \cap (X \setminus G) = \phi$ and hence $ji C^{\Lambda_{\delta}^{s}}(\{x\}) \subseteq G$. Therefore, (X, τ_{1}, τ_{2}) is pairwise $\Lambda_{\delta}^{s} R_{0}$.

Theorem 4.3 A bitopological space (X, τ_1, τ_2) is pairwise $\Lambda_{\delta}^s - R_0$ if and only if for each pair x, y of distinct points in X, $ij - C^{\Lambda_{\delta}^s}(\{x\}) \cap ji - C^{\Lambda_{\delta}^s}(\{y\}) = \phi$ or $\{x,y\} \subseteq ij - C^{\Lambda_{\delta}^s}(\{x\}) \cap ji - C^{\Lambda_{\delta}^s}(\{y\})$.

Proof. Let (X, τ_1, τ_2) be pairwise $\Lambda^s_\delta - R_0$. Suppose that $ij - C^{\Lambda^s_\delta}(\{x\}) \cap ji - C^{\Lambda^s_\delta}(\{y\}) \neq \phi$ and $\{x,y\} \nsubseteq ij - C^{\Lambda^s_\delta}(\{x\}) \cap ji - C^{\Lambda^s_\delta}(\{y\})$. Let $p \in ij - C^{\Lambda^s_\delta}(\{x\}) \cap ji - C^{\Lambda^s_\delta}(\{y\})$ and $x \notin ij - C^{\Lambda^s_\delta}(\{x\}) \cap ji - C^{\Lambda^s_\delta}(\{y\})$. Then $x \notin ji - C^{\Lambda^s_\delta}(\{y\})$ and $x \in X \setminus ji - C^{\Lambda^s_\delta}(\{y\}) \in ji - \Lambda^s_\delta(X,\tau_1,\tau_2)$. But $ij - C^{\Lambda^s_\delta}(\{x\})$ is not a subset of $X \setminus ji - C^{\Lambda^s_\delta}(\{y\})$, this is a contradiction. Hence for each pair x, y of distinct points in X, $ij - C^{\Lambda^s_\delta}(\{x\}) \cap ji - C^{\Lambda^s_\delta}(\{y\}) = \phi$ or $\{x,y\} \subseteq ij - C^{\Lambda^s_\delta}(\{x\}) \cap ji - C^{\Lambda^s_\delta}(\{y\})$.

Conversely, let U be a $ij - \Lambda_{\delta}^{s}$ open set and $x \in U$. Suppose that $ji - C^{\Lambda_{\delta}^{s}}(\{x\})$ is not a subset of U. So there is a point $y \in ji - C^{\Lambda_{\delta}^{s}}(\{x\})$ such that $y \notin U$ and $-C^{\Lambda_{\delta}^{s}}(\{x\}) \cap U = \phi$. Since $X \setminus U$ is $ij - \Lambda_{\delta}^{s}$ closed and $y \in X \setminus U$. Hence $\{x, y\} \nsubseteq ij - C^{\Lambda_{\delta}^{s}}(\{x\}) \cap ji - C^{\Lambda_{\delta}^{s}}(\{y\}) \neq \phi$.

Theorem 4.4 In a bitopological space (X, τ_1, τ_2) , the following statements are equivalent:

- (1) (X, τ_1, τ_2) is pairwise $\Lambda_{\delta}^s R_0$.
- (2) For any $x \in X$, $ij C^{\Lambda_{\delta}^{s}}(\{x\}) = ji \Lambda_{\delta}^{s} \operatorname{Ker}(\{x\})$.
- (3) For any $x \in X$, $ij C^{\Lambda_{\delta}^{s}}(\{x\}) \subseteq ji \Lambda_{\delta}^{s} \operatorname{Ker}(\{x\})$.
- (4) For any $x, y \in X$, $y \in ij C^{\Lambda_{\delta}^{s}}(\{x\})$ if and only if $x \in ji C^{\Lambda_{\delta}^{s}}(\{y\})$.
- (5) For any $ij \Lambda_{\delta}^{s}$ closed set F, $F = \bigcap \{G: G \text{ is a } ij \Lambda_{\delta}^{s} \text{ open set and } F \subseteq G\}$.
- (6) For any $ij \Lambda_{\delta}^{s}$ open set G, $G = \bigcup \{F: F \text{ is a } ij \Lambda_{\delta}^{s} \text{ closed set and } F \subseteq G\}.$

(7) For every $A \neq \phi$ and each $G \in ij - \Lambda_{\delta}^{s} O(X, \tau_{1}, \tau_{2})$ such that $A \cap G \neq \phi$, there exists a $ji - \Lambda_{\delta}^{s}$ closed set F such that $F \subseteq G$ and $A \cap F \neq \phi$.

Proof. (1) \Rightarrow (2) Let $x, y \in X$. Then by theorem 3.6 and 4.3, $y \in ji - \Lambda_{\delta}^{s} \operatorname{Ker}(\{x\})$, implies $x \in ji - C^{\Lambda_{\delta}^{s}}(\{y\})$, $y \in ij - C^{\Lambda_{\delta}^{s}}(\{x\})$. Hence $ij - C^{\Lambda_{\delta}^{s}}(\{x\}) = ji - \Lambda_{\delta}^{s} \operatorname{Ker}(\{x\})$.

 $(2) \Longrightarrow (3)$ Obvious.

(3) \Rightarrow (4) For any $x, y \in X$, if $y \in ij - C^{\Lambda_{\delta}^{s}}(\{x\})$, then $y \in ji - \Lambda_{\delta}^{s} \operatorname{Ker}(\{x\})$ by (3). Then by theorem 3.6, $x \in ji - C^{\Lambda_{\delta}^{s}}(\{y\})$. Similarly the converse.

 $\begin{array}{lll} (4) \implies (5) & \text{Let } F \text{ be a } ij - \Lambda_\delta^s \text{ closed set and } H = \\ \bigcap \{ G \colon G \text{ is a } ji - \Lambda_\delta^s \text{ open set and } F \subseteq G \}. & \text{Clearly } F \subseteq H \text{ .} \\ \text{Let } x \not\in F. \text{ Then for any } y \in F, \text{ we have that } ij - C^{\Lambda_\delta^s}(\{y\}) \subseteq F \text{ .} \\ \text{Hence follows that } x \not\in ij - C^{\Lambda_\delta^s}(\{y\}) \text{ .} \\ \text{Now by } (4), \\ y \not\in ji - C^{\Lambda_\delta^s}(\{x\}). \text{ There exists a } ji - \Lambda_\delta^s \text{ open set } G_y \text{ such that } y \in G_y \text{ and } x \not\in G_y \text{ .} \\ \text{Let } G = \bigcup_{y \in F} \{ G_y \colon G_y \text{ is a } ji - \Lambda_\delta^s \text{ open set, } y \in G_y \text{ and } x \not\in G_y \}. \\ \text{Thus, there exists a } ji - \Lambda_\delta^s \text{ open set } G \text{ such that } x \not\in G \text{ and } F \subseteq G \text{ .} \\ \text{Hence, } x \not\in H \text{ .} \\ \text{Therefore, } F = H. \end{array}$

 $(5) \Longrightarrow (6)$ Obvious.

(6) \Rightarrow (7) Let $A \neq \phi$ and G be a $ij - \Lambda_{\delta}^{s}$ open set and $x \in A \cap G$. By (6), $G = \bigcup \{F: F \text{ is a } ij - \Lambda_{\delta}^{s} \text{ closed set and } F \subseteq G\}$. It follows that there is a $ij - \Lambda_{\delta}^{s}$ closed set F such that $x \in A \subseteq G$. Hence $A \cap F \neq \phi$.

 $(7) \Longrightarrow (1)$ Let G be a $ij - \Lambda_{\delta}^s$ open set and $x \in G$, then $\{x\} \cap G \neq \phi$. Therefore by (7), there exists a $ji - \Lambda_{\delta}^s$ closed F such that $x \in F \subseteq G$ and $\{x\} \cap F \neq \phi$, which implies $ji - C^{\Lambda_{\delta}^s}(\{x\}) \subseteq G$. Therefore, (X, τ_1, τ_2) is pairwise $\Lambda_{\delta}^s - R_0$.

Theorem 4.5 In a bitopological space (X, τ_1, τ_2) , the following properties are equivalent:

(1) (X, τ_1, τ_2) is pairwise $\Lambda_{\delta}^s - R_0$.

(2) For any $ij - \Lambda_{\delta}^{s}$ closed set $F \subset X$, $F = ji - \Lambda_{\delta}^{s} Ker(F)$.

(3) For any $ij - \Lambda_{\delta}^{s}$ closed set $F \subset X$ and $x \in F$, $ji - \Lambda_{\delta}^{s}Ker(\{x\}) \subseteq F$.

(4) For any $x \in X$, $ji - \Lambda_{\delta}^{s} Ker(\{x\}) \subseteq ij - C^{\Lambda_{\delta}^{s}}(\{x\})$.

Proof. (1) \Longrightarrow (2) Let F be $ij - \Lambda_{\delta}^{s}$ closed and $x \notin F$. Then $X \setminus F$ is $ij - \Lambda_{\delta}^{s}$ open containing x. Since (X, τ_{1}, τ_{2}) is pairwise $\Lambda_{\delta}^{s} - R_{0}$, $ji - C^{\Lambda_{\delta}^{s}}(\{x\}) \subseteq X \setminus F$. Therefore, $ji - C^{\Lambda_{\delta}^{s}}(\{x\}) \cap F = \phi$ and by theorem 3.7, $x \notin ji - \Lambda_{\delta}^{s}Ker(F)$. Hence $F = ji - \Lambda_{\delta}^{s}Ker(F)$.

(2) \Longrightarrow (3) Let F be a $ij - \Lambda^s_{\delta}$ closed set containing x. Then $\{x\} \subseteq F$ and $ji - C^{\Lambda^s_{\delta}}(\{x\}) \subseteq ji - \Lambda^s_{\delta}Ker(F)$. From (2), it follows that $ji - C^{\Lambda^s_{\delta}}(\{x\}) \subseteq F$.

(3) \Rightarrow (4) Since $x \in ij - C^{\Lambda_{\delta}^{s}}(\{x\})$ and $ij - C^{\Lambda_{\delta}^{s}}(\{x\})$ is $ij - \Lambda_{\delta}^{s}$ closed in X, by (3) it follows that $ji - \Lambda_{\delta}^{s}Ker(F) \subseteq ij - C^{\Lambda_{\delta}^{s}}(\{x\})$.

 $(4) \Longrightarrow (1)$ Obvious. Proof follows from theorem 4.4.

Remark 4.6 Let (X, τ_1, τ_2) be a bitopolgical space. Then for each $x \in X$, let bi $-\Lambda_{\delta}^{s}(\{x\}) = 12$ -

 $C^{\Lambda_{\delta}^{s}}(\{x\}) \cap 21 - C^{\Lambda_{\delta}^{s}}(\{x\})$ and $bi - \Lambda_{\delta}^{s}Ker(\{x\}) = 12 - \Lambda_{\delta}^{s}Ker(\{x\}) \cap 21 - \Lambda_{\delta}^{s}Ker(\{x\}).$

Theorem 4.7 If a bitopological space (X, τ_1, τ_2) is pairwise $\Lambda_{\delta}^s - R_0$ then for each pair of distinct points $x, y \in X$, either $bi - \Lambda_{\delta}^s(\{x\}) = bi - \Lambda_{\delta}^s(\{y\})$ or $bi - \Lambda_{\delta}^s(\{x\}) \cap bi - \Lambda_{\delta}^s(\{y\}) = \phi$.

Proof. Let (X, τ_1, τ_2) be a pairwise $\Lambda^s_\delta - R_0$ space. Suppose that $\mathrm{bi} - \Lambda^s_\delta(\{x\}) \neq \mathrm{bi} - \Lambda^s_\delta(\{y\})$ and $\mathrm{bi} - \Lambda^s_\delta(\{x\}) \cap \mathrm{bi} - \Lambda^s_\delta(\{y\}) \neq \phi$. Let $s \in \mathrm{bi} - \Lambda^s_\delta(\{x\}) \cap \mathrm{bi} - \Lambda^s_\delta(\{y\})$ and $x \notin \mathrm{bi} - \Lambda^s_\delta(\{y\}) = 12 - C^{\Lambda^s_\delta}(\{y\}) \cap 21 - C^{\Lambda^s_\delta}(\{y\})$. Then $x \notin ij - C^{\Lambda^s_\delta}(\{y\})$. And $x \in X \setminus ij - C^{\Lambda^s_\delta}(\{y\}) \in ij - \Lambda^s_\delta(\{x\})$ since $s \in \mathrm{bi} - \Lambda^s_\delta(\{x\})$ is not a subset of $X \setminus ij - C^{\Lambda^s_\delta}(\{y\})$ since $s \in \mathrm{bi} - \Lambda^s_\delta(\{x\}) \cap \mathrm{bi} - \Lambda^s_\delta(\{y\})$. Thus (X, τ_1, τ_2) is not a pairwise $\Lambda^s_\delta - R_0$ space which is a contradiction to our assumption. Hence we have either $\mathrm{bi} - \Lambda^s_\delta(\{x\}) = \mathrm{bi} - \Lambda^s_\delta(\{y\})$ or $\mathrm{bi} - \Lambda^s_\delta(\{x\}) \cap \mathrm{bi} - \Lambda^s_\delta(\{x\}) = 0$.

V. PAIRWISE $\Lambda_{\delta}^{s} - R_{1}$ SPACES

Definition 5.1 A bitopological space (X, τ_1, τ_2) is said to be pairwise $\Lambda_{\delta}^s - R_1$ if for each $x, y \in X$, $ij - C^{\Lambda_{\delta}^s}(\{x\}) \neq ji - C^{\Lambda_{\delta}^s}(\{y\})$, there exist disjoint sets $U \in ji - \Lambda_{\delta}^s O(X, \tau_1, \tau_2)$ and $V \in ij - \Lambda_{\delta}^s O(X, \tau_1, \tau_2)$ such that $ij - C^{\Lambda_{\delta}^s}(\{x\}) \subseteq U$ and $ji - C^{\Lambda_{\delta}^s}(\{y\}) \subseteq V$.

Theorem 5.2 If a bitopological space (X, τ_1, τ_2) is pairwise $\Lambda_{\delta}^s - R_1$, then it is pairwise $\Lambda_{\delta}^s - R_0$.

Proof. Suppose that (X, τ_1, τ_2) is pairwise $\Lambda^s_\delta - R_1$. Let U be a $ij - \Lambda^s_\delta$ open set and $x \in U$. Then for each point $y \in X \setminus U$, $ji - C^{\Lambda^s_\delta}(\{x\}) \neq ij - C^{\Lambda^s_\delta}(\{y\})$. Since (X, τ_1, τ_2) is pairwise $\Lambda^s_\delta - R_1$, there exists a $ij - \Lambda^s_\delta$ open set U_y and a $ji - \Lambda^s_\delta$ open set V_y such that $ji - C^{\Lambda^s_\delta}(\{x\}) \subseteq U_y$, $ij - C^{\Lambda^s_\delta}(\{y\}) \subseteq V_y$ and $U_y \cap V_y = \phi$. Let $A = \bigcup \{V_y \colon y \in X \setminus U\}$. Then $X \setminus U \subseteq A$, $x \notin A$ and A is a $ji - \Lambda^s_\delta$ open set. Therefore, $ji - C^{\Lambda^s_\delta}(\{x\}) \subseteq X \setminus A \subseteq U$. Hence (X, τ_1, τ_2) is pairwise $\Lambda^s_\delta - R_0$.

Theorem 5.3 A bitopological space (X, τ_1, τ_2) is pairwise $\Lambda_{\delta}^s - R_1$ if and only if for every pair of points x and y of X such that $ij - C^{\Lambda_{\delta}^s}(\{x\}) \neq ji - C^{\Lambda_{\delta}^s}(\{y\})$, there exists a $ij - \Lambda_{\delta}^s$ open set U and $ji - \Lambda_{\delta}^s$ open set V such that $x \in V$, $y \in U$ and $U \cap V = \phi$.

Proof. Suppose that (X, τ_1, τ_2) is pairwise $\Lambda_\delta^s - R_1$. Let x, y be points of X such that $ij - C^{\Lambda_\delta^s}(\{x\}) \neq ji - C^{\Lambda_\delta^s}(\{y\})$. Then there exist a $ij - \Lambda_\delta^s$ open set U and a $ji - \Lambda_\delta^s$ open set V such that $x \in ij - C^{\Lambda_\delta^s}(\{x\}) \subseteq V$ and $y \in ji - C^{\Lambda_\delta^s}(\{y\}) \subseteq U$. On the other hand, suppose that there exists a $ij - \Lambda_\delta^s$ open set U and $ji - \Lambda_\delta^s$ open set V such that $x \in V$, $y \in U$ and $U \cap V = \phi$. Since every pairwise $\Lambda_\delta^s - R_1$ space is pairwise $\Lambda_\delta^s - R_0$, $ij - C^{\Lambda_\delta^s}(\{x\}) \subseteq V$ and $ji - C^{\Lambda_\delta^s}(\{y\}) \subseteq U$. This completes the proof.

Theorem 5.4 A pairwise $\Lambda_{\delta}^{s} - R_{0}$ space (X, τ_{1}, τ_{2}) is pairwise $\Lambda_{\delta}^{s} - R_{1}$ if for each pair of points x and y of X such that $ij - C^{\Lambda_{\delta}^{s}}(\{x\}) \cap ji - C^{\Lambda_{\delta}^{s}}(\{y\}) = \phi$, there exist disjoint sets $U \in ij - \Lambda_{\delta}^{s}O(X, \tau_{1}, \tau_{2})$ and $V \in ji - \Lambda_{\delta}^{s}O(X, \tau_{1}, \tau_{2})$ such that $x \in U$ and $y \in V$.

Proof. It follows directly from definition 4.1 and theorem 4.7.

Theorem 5.5 In a bitopological space (X, τ_1, τ_2) , the following statements are equivalent:

- (1) (X, τ_1, τ_2) is pairwise $\Lambda_{\delta}^s R_1$.
- (2) For any two distinct points $x, y \in X$, $ij C^{\Lambda_{\delta}^s}(\{x\}) \neq ji C^{\Lambda_{\delta}^s}(\{y\})$ implies that there exist a $ij \Lambda_{\delta}^s$ closed set F_1 and a $ji \Lambda_{\delta}^s$ closed set F_2 such that $x \in F_1$, $y \in F_2$, $x \notin F_2$, $y \notin F_1$ and $X = F_1 \cup F_2$.
- **Proof.** (1) \Longrightarrow (2) Suppose that (X, τ_1, τ_2) is pairwise $\Lambda_\delta^s R_1$. Let $x, y \in X$ such that $ij C^{\Lambda_\delta^s}(\{x\}) \neq ji C^{\Lambda_\delta^s}(\{y\})$. By theorem 5.3, there exist disjoint sets $V \in ij \Lambda_\delta^s(X, \tau_1, \tau_2)$ and $U \in ji \Lambda_\delta^s(X, \tau_1, \tau_2)$ such that $x \in U$ and $y \in V$. Then $F_1 = X \setminus V$ is a $ij \Lambda_\delta^s$ closed set and $F_2 = X \setminus U$ is a $ji \Lambda_\delta^s$ closed set such that $x \in F_1$, $x \notin F_2$, $y \in F_2$, $y \notin F_1$ and $X = F_1 \cup F_2$.
- (2) \Rightarrow (1) Let $x,y \in X$ such that $ij C^{\Lambda_{\delta}^{s}}(\{x\}) \neq ji C^{\Lambda_{\delta}^{s}}(\{y\})$. Hence for any two distinct points x,y of X, $ij C^{\Lambda_{\delta}^{s}}(\{x\}) \cap ji C^{\Lambda_{\delta}^{s}}(\{y\}) = \phi$. Then by theorem 4.3, (X,τ_1,τ_2) is pairwise $\Lambda_{\delta}^{s} R_0$. By (2), there exists a $ij \Lambda_{\delta}^{s}$ closed set F_1 and a $ji \Lambda_{\delta}^{s}$ closed set F_2 such that $X = F_1 \cup F_2$, $x \in F_1$, $y \in F_2$, $x \notin F_2$, $y \notin F_1$. Therefore, $x \in X \setminus F_2 = U \in ji \Lambda_{\delta}^{s}(X,\tau_1,\tau_2)$ and $y \in X \setminus F_1 = V \in ij \Lambda_{\delta}^{s}(X,\tau_1,\tau_2)$ which implies that $ij C^{\Lambda_{\delta}^{s}}(\{x\}) \subseteq U$, $ji C^{\Lambda_{\delta}^{s}}(\{y\}) \subseteq V$ and $U \cap V = \phi$. Hence (X,τ_1,τ_2) is pairwise $\Lambda_{\delta}^{s} R_0$.

ACKNOWLEDGEMENT

The authors would like to thank the referees for the useful comments and valuable suggestions for improvement of the paper.

REFERENCES

- [1] H. M. Abu-Donia, "New types of generalized closed sets in bitopological spaces", Journal of the Egyptian Mathematical Society, 21, (2013) 318–323
- [2] H. M. Abu Donia, M. A. Abd Allah, A. S. Nawar, "Generalized ψ^* closed sets in bitopological spaces", Journal of the Egyptian Mathematical Society, 23, (2015), 527–534.
- [3] Bishwambhar Roy and M. N. Mukherjee, "A unified theory for R₀, R₁ and certain other separation properties and their variant forms", Bol. Soc. Paran. Mat. (3s.) V.28, 2, (2010), 15–24.
- [4] M. Caldas, J. Dontchev, "G. Λ_s sets and G. V_s sets", Mem. Fac. Sci. Kochi Univ. Math., 21, (2000),21–30.
- [5] M. Caldas, M. Ganster, D. N. Georgiou, S. Jafari, and S. P. Moshokoa, "δ – semi open sets in topology", Topology Proc., 29, No. 2, (2005),369-383.
- [6] M. Caldas, S. Jafari, S. A. Ponmani and M. L. Thivagar, "On some low separation axioms in bitopological spaces", Bol. Soc. Paran. Mat., (3s.) V. 24, 1-2, (2006), 69-78.
- [7] A. Edward Samuel and D. Balan, "Some aspects of $ij \delta$ semi open sets in bitopological spaces", Global Journal of Pure and Applied Mathematics, Vol. 11, No. 6, (2015), pp.4879-4898.
- [8] A. Edward Samuel and D. Balan, "On Λ_{δ}^{s} Sets in bitopological spaces", General Mathematics Notes, Vol. 32, No. 1, January (2016), pp.21-31
- [9] M. M. El-Sharkasy, "On Λ_{α} sets and the associated topology $T^{\Lambda_{\alpha}}$ ", Journal of the Egyptian Mathematical Society, 23, (2015), 371–376.
- [10] A. Ghareeb, T. Noiri, "Λ Generalized closed sets in bitopological spaces", Journal of the Egyptian Mathematical Society, 19, (2011), 142– 145
- [11] M. J. Jeyanthi, A. Kilicman, S. Pious Missier and P. Thangavelu, " Λ_r Sets and separation axioms", Malaysian Journal of Mathematics, 5(1), (2011), 45 60.
- [12] A. B. Khalaf and A. M. Omer, " S_i open sets and S_i continuity in bitopological spaces", Tamkang journal of Mathematics, Vol. 43, No.1, (2012), 81-97.

- [13] F. H. Khedr, "Properties of ij delta open sets", Fasciculi Mathematici, No.52, (2014), 65 - 81.
- [14] F. H. Khedr and K. M. Abdelhakiem, "Generalized Λ sets and λ sets in bitopological spaces", International Mathematical Forum, 4, No. 15, (2009), 705–715.
- [15] F. H. Khedr and H. S. Al-saadi, "On pairwise θ-semi-generalized closed sets", Far East J. Mathematical Sciences, 28 (2), Feb., (2008), 381–394.
- [16] H. Maki, "Generalized Λ sets and the associated closure operator", The special Issue in commemoration of Prof. Kazuada IKEDA's Retirement, (1986), 139-146.
- [17] M. Mirmiran "Weak insertion of a perfectly continuous function between two real-valued functions", Mathematical Sciences And Applications E-Notes, V. 3 No. 1, (2015), 103-107.
- [18] M. Pritha, V. Chandrasekar and A. Vadivel, "Some aspects of pairwise fuzzy semi preopen sets in fuzzy bitopological spaces", Gen. Math. Notes, Vol. 26, No. 1, Jan.(2015), 35-45.